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I have often taken up a book and have talked to it and 
then put my ears to it, when alone, in hopes it would 
answer me: and I have been very much concerned 
when I found it remained silent. 

The interesting narrative of the life of O. Equiana
(Cited by M. Harbsmeier, 1988, p. 254)

ABSTRACT 
The main thesis of this paper is that algebraic symbolism emerged in the Renaissance as part of a new type 
of thinking  a new type of thinking shaped by the socioeconomic activities that arose progressively in the 
late Middle-Ages. In its shortest formulation, algebraic symbolism emerged as a semiotic way of knowledge 
representation inspired by a world substantially transformed by the use of artefacts and machines. Algebraic 
symbolism, I argue, is a metaphoric machine itself encompassed by a new general abstract form of 
representation and by the Renaissance technological concept of efficiency. To answer the question of the 
conditions which made possible the emergence of algebraic symbolism, I enquire about the cultural modes 
of representation of knowledge and human experience and look for the historical changes which took place 
in cognitive and social forms of signification. 

1 Introduction 

The way in which I wish to study the problem of the emergence of algebraic symbolism can easily 
lead to misunderstandings. Perhaps the most tempting misunderstanding would be to think of this 
paper as a historical investigation of the external factors that made possible the rise of symbolic 
thinking in the Renaissance. “External factors” have usually been seen as economic and societal 
factors that somewhat influence the development of mathematics. They are opposed to “internal 
factors”, which are seen as the true factors accounting for the development of mathematical ideas. 
The distinction between the internal and external dimensions of the conceptual development of 
mathematics rests on a clear cut distinction between the sociocultural on one side, and the “really” 
mathematical on the other. Within this context, the former is seen, as Lakatos suggested, as a mere 
complement to the latter. Viewed from this perspective, it may appear that the route I am taking to 
investigate the emergence of algebraic symbolism belongs to the sociology of knowledge. 
However, to cast my intentions in such a dichotomy is misleading. 

On the one hand, current research on human cognition is emphasizing the tremendous role 
played by the context in the concepts that we form about the world. As Otte (1994, p. 309) 
summarized the idea, “The development of knowledge does not take place within the framework 
of natural evolution but within the frameworks of sociocultural developments.” Thus, if we want 

                                                     
1 This paper is a result of a research program funded by The Social Sciences and Humanities Research 

Council of Canada / Le Conseil de recherches en sciences humaines du Canada (SSHRC/CRSH). 
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to understand the mathematical ideas of a certain historical period, we need to understand their 
encompassing sociocultural developments in the amplest sense. 

On the other hand, in the past few years, more and more arguments have been produced to the 
effect that mathematics bears the imprint of its culture, so that, under closer examination, what 
seemed to be “external” is not. As Crombie (1995, p. 232) noted, the cultural conception of 
mathematics determines the organization of scientific inquiry, the kind of arguments that will be 
socially accepted, the kind of evidence and the type of explanations that will be considered valid. 

The awareness that there may be a relationship between mathematical thinking and its own 
cultural context has moved current historical and epistemological discussions away from naturalist 
and rationalist accounts of mathematical thinking. However, the awareness of the relationship 
between culture and thinking is not enough. As a matter of fact, historical and epistemological 
accounts of mathematical conceptual developments have thus far not been very successful in 
specifying how mathematical thinking relates to culture. I want to go further and suggest that if we 
do not specify the link between culture and mathematical conceptualizations, we risk using culture 
as a generic term that attempts to explain something, while in reality it does not explain anything. 

In the first part of this paper, I will outline the theoretical framework to which I will resort in 
order to attempt to answer the question of the conditions of the emergence of algebraic symbolism. 
In the second part, I will deal with the place of algebra in its historical setting, focusing mainly on 
changes in the cultural forms of signification and knowledge representation. 

2 The link between culture and knowledge 

The Semiotic Anthropological Perspective that I have been advocating2 draws from the socio-
historical school of thought developed by Vygotsky, by Leont’ev’s Theory of Activity and from 
Wartofsky’s and Ilyenkov’s epistemologies3. In this perspective, mathematics is considered to be a 
human production. This claim is consonant with claims made by Oswald Spengler (1917/1948) 
almost one century ago and revitalized by contemporary scholars such as Barbin (1996), 
D’Ambrosio (1996), Restivo (1992, 1993), Høyrup (1996, 2002).  

There are three key interrelated elements underpinning the Semiotic Anthropological 
Perspective: 

– The concept of activity as a unit of analysis. 
– A reconceptualization of knowledge. 
– A cultural definition of thinking. 

The concept of Activity:

Activity, as a unit of analysis for the understanding of conceptual developments, refers not only to 
what mathematicians were doing at a certain historical moment and how they were doing it. It also 
refers to the ineluctably sociocultural embeddedness of the ways in which mathematics is carried 
out. Activity, as understood here, emphasizes the culturally grounded “rational” inquiry that 
constitutes the particularities of mathematical thinking in a certain historical period and setting. 

The concept of activity does not tell us, however, in which sense we have to understand the link 
between culture and knowledge. What we have asserted about activity is good enough for 

                                                     
2 Radford (1997, 1998, 1999, 2003a). 
3 See Vygotsky (1962, 1978, 1981), Leont’ev (1978), Wartofsky (1979), Ilyenkov (1977). 
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conceiving of mathematics as a human endeavour, but it is certainly insufficient to bring us 
beyond the internal/external dichotomy of classical historiography. In other words, the idea of 
activity expounded thus far provides room for seeing “connections” between mathematical 
knowledge and its cultural settings, but in no way tells us the nature of such “connections”. 
Without further development, the “connections” cannot be explained but only empirically shown4.

A reconceptualization of knowledge. 

What then exactly is the relationship between culture and knowledge? In opposition to Platonist or 
Realist epistemologies, knowledge is not considered here as the discovery of something already 
there, preceding human activity. Knowledge is not about pre-existing and unchanging objects. 
Knowledge relates to culture in the precise sense that the objects of knowledge (geometric figures, 
numbers, equations, etc.) are the product of human thinking. Knowledge is generated through 
sociocultural activities. The way in which knowledge is generated and the very nature of the 
content of knowledge are related to the sensuous forms of these activities and the historical 
embodied beliefs and intelligence kept in them. The Pythagorean knowledge about numbers, for 
instance, was generated in the course of the social-intellectual activities of the brotherhood, 
mediated by the sensuous use of stones and other mathematical signs to represent knowledge and 
the historical, cultural, ontological belief that there was a link between the nature of numbers and 
the universe (Radford, 1995, 2003a). 

A cultural definition of thinking. 

Following Wartofsky (1979), I conceive of thinking as a cognitive praxis. More precisely, 
thinking, I want to suggest, is a cognitive reflection of the world in the form of the individual’s 
culturally framed activities.

As we can see from the previous remarks, activity is not merely the space where people get 
together to do their thinking. The essential point is that the cultural, economic and conceptual 
formations underpinning knowledge-generating activities impress their marks on the theoretical 
concepts produced in the course of these activities. Theoretical concepts are reflections that reflect 
the world in accordance to the social processes of meaning production and the conceptual cultural 
categories available to individuals. 

What I am suggesting in this paper is that algebraic symbolism is a semiotic manner of 
reflecting about the world, a manner that became thinkable in the context of a world in which 
machines and new forms of labor transformed human experience, introducing a systemic 
dimension that acquired the form of a metaphor of efficiency, not only in the mathematical and 
technical domains, but also in aesthetics and other spheres of life. 

In the next section, I will briefly discuss some cultural-conceptual elements of abacist algebraic 
activity. In the subsequent sections, I will focus on the technological and societal elements which 
underlined the changes in Renaissance modes of knowledge representation. 

                                                     
4 This is the case with Eves’ book An Introduction to the History of Mathematics. In contrast to the 

previous editions of the book (see e.g. Eves, 1964), in the 6th edition (see Eves 1990), a section was added 
in which the cultural setting was expounded before each chapter. Connections are shown rather than 
explained. That Netz (1999) placed the cultural aspects of Greek mathematics in the last part of his 
otherwise enlightening book, after all the mathematical aspects were explained (as if the cultural aspects 
were independent of or at least not really a part of mathematical thinking), is representative, I believe, of the 
difficulty in tackling the theoretical problem of the connection between culture and mathematical 
knowledge. 
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3 Abacist algebraic activity 

In his work Trattato d’abaco, Piero della Francesca deals with the following problem: 

A gentleman hires a servant on salary; he must pay him at 25 ducati and one horse per year. 
After 2 months the worker says that he does not want to remain with him anymore and wants to 
be paid for the time he did serve. The gentleman gives him the horse and says: give me 4 ducati 
and you shall be paid. I ask, what was the horse worth? (Arrighi (ed), 1970, p. 107) 

This is a typical problem from the great number of problems that can be found in the rich quantity 
of Italian mathematical manuscripts that abacus teachers wrote from the 13th century onwards. 
This problem conveys a sense of the kinds of reflections in which the Italian algebraists were 
immersed as a result of the new societal needs brought forward by changes in the forms of 
economic production. While in feudal times the main form of property was land and the serfs 
working on it, and while agricultural activities, raising cattle and hunting, were conducted in order 
to meet the essential requirements of life, during the emergence of capitalism, the fundamental 
form of property became work and trade (see Figure 1) 

Figure 1. To the left, a man is planting peas or beans, following the harrow (from Life in a 
Medieval Village, F. & G. Gies, 1990, p. 61). To the right, merchants selling and trading products 

(from Paolo dell’Abbaco’s 14th Century Trattato d’Aritmetica, Arrighi (ed.), 1964). 

Changes in the form of human labor gave rise to new conceptual demands, requiring new 
cognitive abilities to cope with the various economic practices and new aspects of life. Let us see 
how della Francesca solved this problem. Note that, to represent the unknown quantities, in some 
parts of the text, della Francesca uses the term “thing” (cosa); in other parts he uses a little dash 
placed on top of certain numbers. Historically speaking, della Francesca’s symbolism is in fact one 
of the first known 15th Century algebraic symbolic systems. 

Do this. You know that he has to give him 25 ducati per year, for 2 months it comes to 4 I/6; 
and the horse put that it’s worth  thing, for 2 months it is worth 2/12 of the thing that is I/6 
(sic). You know that you have to have in 2 months 4 ducati and I/6 and I/6 of the thing. And 
the gentleman wants 4 ducati that added to 4 I/6 makes 8 I/6. Now, you have 1/6 of the thing, 
[and] until  there are 5/6 of the thing; therefore 5/6 of the thing is equal to 8 I/6 number. 
Reduce to one nature [i.e. to a whole number], you will have 5 things equal to 49; divide by the 
things it comes out to 9 4/5: the thing is worth so much and we put that the horse is worth ,
therefore it is worth 9 ducati 4/5 of a ducato. (Arrighi (ed), 1970, p. 107). 

I will come back to the question of symbolism in the next section. For the time being, I want to 
comment on two of the key concepts involved in the problem: time and value.
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Time: Time appears as a mathematical parameter against which labor is measured. Although 
time is a dimension of human experience with which cultures have coped in different ways, here 
we see that the quantification of the labor value (as money loaned at interest in other problems, 
etc.) requires a strict quantification of time. It requires conceiving of time in new quantifying terms 
(a detailed discussion about the quantification of time can be found in Crosby, 1997). 

Value: Equally important is the fact that summing labor with animals, as Piero della Francesca 
does here, requires a formidable abstraction. It requires seeing labor (an already abstract concept) 
and animals (which are tangible things) as homogeneous, at least in some respect5.

As I argued in a previous article (Radford, 2003b), what makes the sum of a horse and labor 
possible is one of the greatest mathematical conceptual categories of the Renaissance –the 
category of value, a category that neither the abacists nor the court-related mathematicians (see 
Biagioli, 1989) theorized in an explicit way. Value is the top element in a concatenation of cultural 
conceptual abstractions. The first one is “usage value”. The usage value U(a) of a thing a is related 
to its “utility” in its social and historical context. The second one is the “exchangeable value”; it 
puts in relation two usage values and as such it is an equality between two different things, 
something like U(a) = U(b). The third one is of the “value” V(a) of a thing a measured, as in the 
problem, in terms of money. Value is what allowed individuals in the Renaissance to exchange 
wax, not just for wool, but for other products as well, and what allowed them to imagine and 
perform additions between such disparate objects as labor and horses6.

Value is one of the crystallizations of the economic and conceptual formations of Renaissance 
culture. As with all cultural categories, value runs throughout the various activities of the time. It 
lends a certain form to activities, thereby affecting, in a definite way, the very nature of 
mathematical thinking, for thinking –as we mentioned before– is a reflection of the world 
embedded in, and shaped by, the historically constituted conceptual categories that culture makes 
available to its individuals. 

Horses and labor can be seen in the 15th Century as homogeneous because both have become 
part of a world that appears to its individuals in terms of commodities. They are thought of as 
having a similar abstract form whose common denominator is now money. It makes sense, then, to 
pose problems about trading and buying in the way it was done in the Renaissance, for money had 
already become a metaphor, a metaphor in the sense that it stored products, skill and labor and also 
translated skill, products and labor into each other (see McLuhan, 1969, p. 13). 

What does all this have to do with algebra? We just saw that value was the central element 
allowing individuals in the Renaissance to establish a new kind of abstract relationship between 
different things. In terms of representations, value made it possible to see that one thing could 

                                                     
5 To better appreciate the abstraction underpinning the homogeneous character with which two different 

commodities such as labor and animals are considered in the previous problem, it is worthwhile to recall the 
case of the Maoris of New Zealand, for whom not all things can be included in economic activity. As 
Heilbroner reminds us, “you cannot ask how much food a bonito hook is worth, for such a trade is never 
made and the question would be regarded as ridiculous.” (Heilbroner, 1953/1999, p. 27). 

6 Of course, money as the concrete expression (i.e. the sign) of value was used in ancient civilizations 
such as Mesopotamia, Egypt and Greece (Rivoire, 1985; Sédillot, 1989). However, during the Renaissance,
money is no longer simply a convention as it was for Aristotle and Athenian society (see Hadden, 1994; 
Radford, 2003b). During the period of emergent capitalism, money was conceived of as belonging to the 
class of things coming from nature and from the work of individuals. Thereby, it was possible to conceive of 
things as being, in a sense, homogenous. (For additional details about the cognitive impact of commodity 
exchange activities see the classical work of Sohn-Rethel, 1978. Sohn-Rethel rightly pointed out the kind of 
abstraction that emerges from commodity production but, in a move coherent with historical materialism, 
went too far to reduce cognition to the economic sphere. Indeed, this move leads one to a too reductive 
picture of human cognition. See Radford, in press). 
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take the place of another, or, in other terms, that one thing (a money coin, e.g.) could be used to 
represent something else. And this is the key concept of algebraic representation.  

However, although the conceptual category of value was instrumental in creating new forms of 
signification and of representation, the concept of value cannot fully account for the emergence of 
algebraic symbolism. To be sure, value was instrumental in creating different new forms of 
signification which were distinct from medieval ones (which were governed by iconicity or figural 
resemblance, or those mentioned by Foucault (1996), like convenientia and aemulatio, or analogie
and sympathie). Without a doubt, value has shown that representation is arbitrary in the sense that 
the value of a thing does not reside in the thing itself but in a series of contextual usage values, and 
we know that the arbitrariness of the signifier is one of the key ideas of algebraic representation. 
But I will argue later that, along with value, there was another cultural category that played a 
fundamental role, too. I will come back to this point shortly. Let us now deal with what I want to 
term oral algebra.

4 Oral algebra

As Franci and Rigatelli (1982, 1985) have clearly shown, algebra was a subject taught in the 
abacus schools. Algebra was in fact part of the advanced curriculum of merchants’ education. As 
in the case of the other disciplines, the teaching and learning of algebra was in all likelihood done 
for the most part orally. The abacists’ manuscripts, which were mostly intended as teachers’ notes, 
indeed exhibit the formulaic texture of oral teaching. They go from problem to problem, 
indicating, in reasonable detail, the steps to be followed and the calculations to be performed. 

Let us come back once more to della Francesca’s problem. The text says: 

Do this. You know that he has to give him 25 ducati per year, for 2 months it comes to 4 I/6; 
and the horse put that it’s worth  thing, for 2 months it is worth 2/12 of the thing that is I/6 
(sic). 

From the text, we can easily imagine the teacher talking to one student. When the teacher says “Do 
this” he uses an imperative mode to call the student’s attention to the order of the calculations that 
will follow. Then, he says: “You know that …”. The colloquial style of face to face interaction is 
indeed a common denominator of abacists’ manuscripts7. In all likelihood, oral explanations were 
accompanied by the writing of calculations. This is suggested by the use of the recurrent 
imperative accompanying the algebraic symbolization (here “put” used to indicate the 
symbolization of the value of the horse). The written calculations could have been done on 
wooden tablets, covered with wax and written on with styluses. Tablets of this type had been in 
use since the 12th Century in school activities to write and compose written exercises in prose and 
verse. Calculations could also be done on paper, which had become increasingly available at the 
time. 

                                                     
7 Høyrup (1999) remarked that the Algebra of Master Jacob of Florence (1307) includes colloquial-

pedagogical remarks such as “Abiamo dicto de rotti abastanza, però…”, “Et se non te paresse tanto chiara 
questa ragone, si te dico que ogni volta che te fosse data simile ragione, sappi primamente …” “Et abi a 
mente questa regola”, etc. 
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In this context, the student could hear the teacher’s explanation and could see the teacher’s 
gestures as he pointed to the calculations (see Figure 2). 

Figure 2. A woodcut showing a teacher examining a pupil (from Orme, 1989, p. 72) 

Perhaps, while talking, the teacher wrote something like the text shown if Figure 3. 

Figure 3. The teacher’s hypothetical written text accompanying the oral explanation (perhaps 
the written text was less linear than here suggested). 

Such a text would support the rich audio (but also perceptual and kinesthetic) mathematical 
activity that I want to term oral algebra. The adjective oral stresses the essential nature of the 
teaching and learning situation –a situation which eventually could also have had recourse to the 
teacher’s notes. In fact, the rich audio and tactile dimension of the learning experience of the time 
is very well preserved by the look of certain manuscripts. Many of them bear vivid colors and 
drawings which still stress the emphatic involvement of the face-to-face setting (see Figure 4; for 
more details, see Shailor, 1994). 

As shown by “The gentleman and the servant problem”, oral algebra involved making recourse 
to a text with some algebraic symbolism. However, symbols were not the focus of the 
mathematical activity. They were part of a larger mathematical discourse, their role being to 
pinpoint crucial parts of the problem-solving procedure. As we shall see in the next section, at the 
end of the 15th Century the emergence of printing brought forward new forms of knowledge 
representation that changed the practice of algebra, as well as the status of symbols. 

25  4 I/6 
       I/6 

4
8 I/         /6     5 /6  
8 I/6      5 /6   
5   49 
  9 4/5  
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Figure 4. Example of a mathematical manuscript. From Calandri’s 15th century Aritmetica
(Arrighi, ed., 1969, p. 96) 

5 Written algebra 
No doubt, the emergence of the printing press not only transformed the forms of knowledge 
representation, it also altered the classical structures of learned activities. More importantly, the 
printing press ended up modifying the individual’s relationship to knowledge, as is witnessed by 
the passage quoted in the epigraph of this paper. 

With the arrival of the printed book, new cognitive demands arose. The arsenal of resources of 
oral language, such as vocal inflections, gestures that help to focus the interlocutor’s attention on 
specific points of the problem at hand, the empathy and participation of all the senses, all of this 
was definitely gone. The reader was left in the company of a cold sequence of printed words. 
Speech was transformed into writing. And so too was algebra. 

For a reader of the 16th Century, to learn algebra from a printed book such as Luca Pacioli’s 
Summa de Arithmetica geometria Proportioni: et proportionalita (1494) or Francesco Ghaligai’s 
Pratica d’Arithmetica (1521), meant to be able to cope with the enclosed space of the book. It also 
meant to cope with a mathematical experience organized in a linear way and to overcome the 
difficulties of a terminology that, for the sake of brevity, used more and more abbreviations, such 
as “p” for piu (plus), “m” for minus “R.q.” (or sometimes “R”) for square root, or contracted 
words, like “mca” for multiplica (multiply) (see Figure 5). 

While in a face-to-face interaction ambiguities could be solved by using gestures accompanied 
by explicative words, the author of the book had to develop new codes to make sure that the ideas 
were well understood. Syntactic symbols were a later invention to supply the reader with 
substitutes for the pauses that organize sentences in oral communication8. Brackets are perhaps a 
good example to mention. In a printed book, the numbers affected by the extraction of a square 
root have to be clearly indicated. 

                                                     
8 Arrighi tells us that, in his remarkable modern editions of abacists manuscripts, he added modern 

punctuation (See Arrighi’s introduction to his 1970 edition of della Francesca’s Trattato d’Abaco; see also 
Arrighi, 1992). 
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Figure 5. Excerpt from Pacioli’s Summa d’arithmetica, edition of 1523 

Thus, in his book L’Algebra, Bombelli used a kind of “L” and inverted “L” to remove the 
ambiguity surrounding the numbers affected by the square root sign (see Figure 6). 

161642024
422024

220244
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Figure 6. To the left, an extract from L’Algebra by Rafaele Bombelli (1572) (Bortolotti, E., (ed.), 
1966) with, to the right, its translation into modern symbols. The square root is symbolized by 

“R.q.” (“Radice quadrata”). Parentheses having not yet been invented, to indicate that the square 
root affects the term 24-20x, Bombelli uses a letter L and the “inverted” letter L 

It is clear from the above discussion that the printed book led to a specialization of algebraic 
symbolism. It conferred an autonomy to symbols that they could not reach before. Even if symbols 
kept the traces of the previous cultural formations where they had played the role of abbreviations, 
the printed book modified the sensibility of the inquisitive consciousness of the Renaissance. This 
inquisitive consciousness was now exploring the avenues and potential of the new linear and 
sequential mathematical experience. Thus, Bombelli’s symbolism is made up of abbreviations, but 
interestingly enough it is also made up of arbitrary signs, that is, signs with no clear link to the 
represented object. Bombelli’s representation of the unknown and its powers belong to this kind of 
sign.

Peletier’s algebraic symbolism is also made up of abbreviations (e.g. “R” for racine) and 
arbitrary signs (see Figure 7). 
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Figure 7. Peletier’s symbolism as elaborated in L’Algèbre, 1554, p. 8.

Bombelli’s and Peletier’s algebraic symbolisms are examples of systems of representation which 
are partly concrete-contextually based, partly abstract-decontextually based. Their attempts still 
keep the vestiges of oral algebra, to the extent that when Peletier introduced his abstract symbols, 
he told his reader how to pronounce them in natural language (see Figure 8). 

Figure 8. Peletier explains how to pronounce the 
algebraic symbols. L’Algèbre, 1554, p. 11. 

In light of the previous remarks, can it now be suggested that algebraic symbolism is a corollary of 
the printing press? My answer is no. The printing press itself was the symptom of a more general 
cultural phenomenon. It was the symptom of the systematization of human actions though 
instruments and artefacts. Such a systematization radically modified human experience in the 
Renaissance, highlighting factors such as repeatability, homogenization and uniformity proper to 
mass production. As manufacturing, trading, banking and other activities underwent further 
refinement from the 13th Century onwards, a new crystallization of the economic and conceptual 
formation of Renaissance culture arose –efficiency. Like value, efficiency (understood in its 
technological sense) became a guiding principle of human activity. 

Following this line of thought, in the next section, I will argue in more detail that the changes 
in modes of representation were not specifically related to printing (which was nonetheless the 
highest point in the process of the mechanization of all handicrafts), but to the development of a 
technology that transformed human experience, impressing its mark on the way in which the 
reflection of the world was made by the inquisitive consciousness of the Renaissance. 

6 The cultural and epistemological conditions of algebraic 
symbolism

Commenting on the differences between the classic geometric procedures (“démonstrations en 
lignes”) and the new symbolic ones, as Bombelli’s or Vieta’s, Serfati pointed out the huge 
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advantage of the latter in that they bring forward “a strong automatism in the calculations” 
(Serfati, 1999, p. 153). 

A similar remark was made by Cifoletti in her studies on Peletier. She rightly observed that 
Peletier’s  

principal innovation resides in the introduction of as many symbols as there are unknowns in 
the problem, as well as in the fact that the unknowns in the problem correspond to the 
unknowns in the equations, in contrast to what was being suggested by, for example, Cardan 
and Stifel. (Cifoletti, 1995, p.1396)9

The introduction of arbitrary representations for the several unknowns in a problem is indeed part 
of Peletier’s central idea of elaborating an “automatic procedure” (Cifoletti, 1995, pp. 1395-96; 
Cifoletti, 1992, p. 117 ff.) to tackle the problems under consideration. Instead of having recourse 
to sophisticated artifices like those used by Diophantus several centuries before the Renaissance, 
the symbolic representation of several unknowns offered the basis for a clear and efficient method. 

Clarity and efficiency of method, of course, are cultural concepts. Diophantus would have 
argued that his methods were perfectly clear and efficient (see Lizcano, 1993). And Plato would 
have claimed that efficiency (in its technological sense) should be the last of our worries10.

Thus, the emergence of algebraic symbolism appears to be related to a profound change around 
the idea of method. Jacob Klein clearly noticed this when he stated that what distinguishes the 
Greek algebraists, like Diophantus, from the Renaissance ones is a shift from object to method:
ancient mathematics 

[…] was centered on questions concerning the mode of being of mathematical objects […]. In 
contrast to this, modern mathematics [i.e. 16th and 17th Century mathematics] turns its 
attention first and last to method as such. It determines its objects by reflecting on the way in 
which these objects become accessible through a general method. (Klein, 1968, p. 122-123; 
emphasis as in the original) 

The difference between “ancients” and “moderns” can be explained through an epistemological 
shift that occurred in the post-feudal period. Referring to 16th Century “modern” epistemology, 
Hanna Arendt argues that the focus changed from the object to be known to the process of 
knowing it. Even if “man is unable to recognize the given world which he has not made himself, 
he nevertheless must be capable of knowing at least what he has made himself.” (Arendt, 1958a, p. 
584). Or “man can only know what he has made himself, insofar as this assumption in turn implies 
that I ‘know’ a thing whenever I understand how it has come into being”. (op. cit. p. 585; the idea 
is elaborated further in Arendt, 1958b).  

The use of letters in algebra, I want to suggest, was related to the idea of rendering the 
algebraic methods efficient in the previous sense, that is to say, in accordance to the general 16th

century understanding of what it means for a method to be clear and systematic, an understanding 
that rested on the idea of efficiency in the technological sense. You write down your unknowns, 
and then you translate your word-problem. Now you no longer have words with meanings in front 

                                                     
9 “L’innovation principale réside dans l’introduction d’autant de symboles qu’il y a d’inconnues dans le 

problème, et en ce que les inconnues du problème coïncident avec les inconnues des équations, 
contrairement à ce que suggéraient, par exemple, Cardan et Stifel.  (Cifoletti, 1995, p. 1396)] 

10 The use of mechanical instruments made by e.g. Eudoxus and Architas was indeed criticized by Plato: 
“But Plato took offense and contended with them that they were destroying and corrupting the good of 
geometry, so that it was slipping away from incorporeal and intelligible things towards perceptible ones and 
beyond this was using bodies requiring much wearisome manufacture.” (Plutarch, Lives: Marcellus, xiv; 
quoted by Knorr 1986, p. 3). 
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of you. What you have is a series of signs that you can manipulate, in a machine-like manner, in an 
efficient way. Signs become manipulated as commodities were manipulated in the 16th century 
market place. And as you do not even need to know who made the commodity, in the same way 
you do not need to know what objects the signs refer to. We are here in front of a new 
epistemological stratum that regulates in a same way the abstraction of the referent in algebra and 
in the economic world. 

In more general terms, what I want to suggest is that the social activities of the post-feudal 
period were highly characterized by the two crystallizations of the economic and conceptual 
formations of Renaissance culture discussed in this paper, namely value and efficiency.
Mathematical thinking as a reflection of the world was shaped by these crystallizations. These 
crystallizations led to two points. On the one hand, to an unprecedented creation of instruments 

e.g. military machinery, da Vinci’s impressive investigations on flying machines, parabolic 
mirrors, pulleys, etc. (see Pedretti, 1999), Dürer’s perspectograph, and so on. On the other hand, to 
a reconceptualization of mathematical methods and the creation of new ones (e.g. analytic 
geometry) modelled to an important extent on the technological metaphor of efficiency. 

Within this context, the effort carried out by one of the fathers of algebraic symbolism to 
legitimize the use of instruments in mathematics is fully understandable. Indeed, in his Geometry,
Descartes (see Figure 9) complains about the lack of interest shown by ancient mathematicians for 
“mechanical curves”, i.e. curves constructed with some sort of instruments for, as he argues, one 
must to be consistent and then also reject circles and straight lines, given that they are constructed 
with rule and compass, which are instruments too (Descartes, 1637/1954, pp.40-43; see Figure 9): 

To sum up, although certainly not the only elements, value and efficiency (in its technological 
sense) helped to build the epistemological foundations for the emergence of algebraic symbolism. 

Figure 9. Descartes’ construction of a curve with the help of an instrument made up of several 
rules hinged together. Descartes argued that curves described by several successive motions or 

continuous motion of instruments may yield exact knowledge of the resulting curve (Dover edition 
of La Géométrie, 1954, p. 46). 

7 Synthesis and Concluding Remarks 

Cultural conceptual categories are crystallizations of historic, economic and intellectual 
formations. They constitute a powerful background embodying individuals’ reflections of the 
world as it appears to them, for living in a culture means to be diversely engaged in the interactive 
zones of human activity that compose that culture.  
The two aforementioned crystallisations were instrumental in creating the conditions for a new 
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kind of inquisitive consciousness –a consciousness which expressed its reflection about the world 
in terms of systematic and efficient procedures. 

That the previous crystallizations reappeared in other sectors of human life can indeed be seen 
if we turn to painting. Perspective calls for a fixed point of view, an enclosed space, much like the 
page of the written book. It supposes homogeneity, uniformity and repeatability as key elements of 
a world that aligns itself according to the empire of linear vision and self-contained meaning (see 
Figure 10). 

Perspective is a ‘clear method’ with which to represent space in a systematic and efficient 
instrumental form (see Figure 11), in the same manner that the emergent algebraic symbolism is a 
‘clear method’ with which to represent word-problems through symbols. Symbolic algebra and 
perspective painting in fact obey the same form of cultural signification. This is why perspective 
lines are to the represented space what algebraic symbols are to the represented word-problem. 

Figure 10. A perspective drawing from 1545 

Figure 11. Dürer’s perspectograph or 
instrument to draw and object in perspective 

It is important to note at this point in our discussion that the two aforementioned crystallizations, 
value and efficiency, were translated in the course of the activities into an ontological principle 
which, during the Renaissance, made the world appear to be something homogeneous and 
quantifiable in a manner that was unthinkable before. Converted into an ontological principle, it 
permeated the various spheres of human activity. In the sciences, it led to a mechanical vision of 
the world. In mathematics, such a principle, which nonetheless remained implicit, allowed 
Tartaglia, for instance, to calculate with what would have been considered non-homogeneous 
measures for the Greek episteme. As Hadden, remarked, 

Niccolo Tartaglia (d. 1557), for example, formulates a statics problem in which it is required to 
calculate the weight of a body, suspended from the end of a beam, needed to keep the beam 
horizontal. Tartaglia’s solution requires the multiplication and division of feet and pounds in 
the same expression. Euclidean propositions are employed in the technique of solution, but 
Euclidean principles are also thereby violated. (Hadden, 1994, p. 64) 

The homogeneous and quantifiable outlook of things (see Crosby, 1997) was to the ontology of 
the Renaissance what the principle of non-contradiction was to Greek ontology or what the yin-
yang principle of opposites was to the Chinese one. 

It is perhaps impossible to answer, in a definitive way, the question of whether or not the 
alphanumeric algebraic symbolism of today could have emerged had printing not been invented. 
Piero della Francesca’s timid algebraic symbolism suggests, however, that the idea was ‘in the air’ 
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– or to say it in more technical and precise terms, the idea was in the zone of proximal development
of the culture11. Perhaps printing was a catalyzer that helped the Renaissance inquisitive 
consciousness to sharpen the semiotic forms of knowledge representation in a world that 
substantially transformed human experience by the use of artifacts and machines and which 
offered a homogeneous outlook of commensurate commodities through the cultural abstract 
concept of value. Value has certainly shown that things are interchangeable and that their 
representation is in no way an absolute claim for the legitimacy of the represented thing. Giotto’s 
paintings are representations in this modern sense of the word: they do not claim a coincidence 
between the representation and the represented object. Stories, in Giotto’s paintings, are often told 
by moving a few signs around the painting surface (the rock, the dome, the tree, the temple, the 
heritage, the church, etc.), much as algebraic symbolism produces different stories by moving its 
signs around. 

Peletier’s immense genius led him to see that the key concept of our contemporary school 
algebra is the equation. For sure, Arab algebraists classified equations before abacists such as 
Pacioli or della Francesca and Humanists like Peletier or Gosselin, but these equations referred to 
‘cases’, distinguished according to the objects related by the equality. For Peletier, the equation 
belongs to the realm of the representation: an equation is an equality, not between the objects 
themselves, but as they are dénommés, that is, designated (see Figure 12). 

For Peletier, the equation is a semiotic object. Peletier belongs to the post-feudal ear, the era 
where, as Foucault (1966) remarked, things and names part company12.Value, as a cultural abstract 
concept, has made the place of things in the world relative, thereby leading to new forms of 
semiotic activity. 

As Otte (1998, p. 429) suggested, the main 
epistemological problem of mathematics lies in 
our understanding of ‘A=B’, that is, in the way 
in which the same object can be diversely 
represented13. Abacists were the first to tackle 
this problem through the intensive use of the 
cultural category of value, thereby opening the 
door for subsequent theorizations, as the 
mathematician Bochner very well realized, 
although not without some surprise. He said: 

It may be strange, and even painful, to 
contemplate that our present-day mathematics, which is beginning to control even the minutest 
distances between elementary particles and the intergalactic vastness of the universe, owes its 
origination to countinghouse needs of ‘money changers’ of Lombardy and the Levant.
(Bochner, 1966, p. 113) 

Perhaps our debt to the abacisits would be less painfully resented if it were recognized that 
knowledge relates to culture in the precise sense that the activity from which the object of 

                                                     
11 The concept of zone of proximal development was introduced by Vygotsky (1962) to explain the 

ontogenesis of concepts in individuals. I am expanding it here to account for that which becomes potentially 
thinkable and achievable in a culture at a certain moment of its conceptual development. 

12 See also Nicolle, 1997. 
13 See also Otte (in press). 

Figure 12. Peletier’s definition of equation. 
L’Algèbre, 1554, p. 22 
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knowledge is generated impresses in the object of knowledge the traces of the conceptual and 
social categories that it mobilizes, and that what we know today and the way that we have come to 
know it bear the traces of previous historical and cultural formations. 
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The causality proof scheme1

“We do not think we understand something until we have grasped the why of it. … To grasp the 
why of a thing is to grasp its primary cause,” asserts Aristotle in Posterior Analytics. Some 16-17th

Century philosophers argued that mathematics is not a perfect science because “implication” in 
mathematics is a mere logical consequence rather than a demonstration of the cause of the 
conclusion. If we are to draw a parallel between the individual’s epistemology of mathematics and 
that of the community, the following questions are of paramount importance: Was the causality 
issue of marginal concern to the mathematics of the sixteen and seventeen centuries, or had it 
significantly affected it? To what extent did the practice of mathematics in the sixteen and 
seventeen centuries reflects global epistemological positions that can be traced back to Aristotle’s 
specifications for perfect science? Mancosu (1996) argues that the practice of Cavalieri, Guldin, 
Descartes, and Wallis, and other important mathematicians reflects a deep concern with these 
issues. He shows, for example, how two of the major works of the 1600s—the work by Cavalieri 
on indivisibles and that by Guldin, his rival, on centers of gravity—aimed at developing 
mathematics by means of direct proofs. These two mathematicians, argued Mancosu, explicitly 
avoided proofs by contradiction in order to conform to the Aristotelian position on what 
constitutes perfect science—a position Aristotle articulated in his Posterior Analytics. Mancosu 
(1996) also argues convincingly that Descartes, whose work represents the most important event in 
seventeenth-century mathematics, was heavily influenced by these developments. Descartes 
appealed to a priori proofs against proofs by contradiction because they show how the result is 
obtained and why it holds, and they are causal and ostensive. 

The history of the development of the concept of proof may suggest that our current 
understanding of proof was born out of an intellectual struggle during the Renaissance about the 
nature of proof—a struggle in which Aristotelian causality seem to have played a significant role. 
If the epistemology of the individual mirrors that of the community, we should expect the 
development of students’ conception of proof to include some of the major obstacles encountered 
by the mathematics community through history. We conjecture that Aristotelian causality is one of 
these obstacles. In my studies, causality has been observed with able students, who seek to 
understand phenomena in depth, than with weak students who usually are satisfied with whatever 
the teacher presents.  
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1 “Proof scheme” is the sense given in Harel & Sowder (1998). 
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Proof in History and the Classroom 
Historically the philosopher Thales has been accredited as the inventor of the mathematical proof. 
I have seen an argument which questions this honour where the main point is that since Thales did 
not have an axiom system, he could not prove anything at all. 

However, the purpose of a proof is to convince an audience, by making them "see for 
themselves" that what I say is true. /What is needed is not a system of axioms, but that the prover 
and the audience agree on what is considered as known and what is accepted as obvious or 
convincing./ Therefore it can be said that in this respect, Thales was in a situation similar to that of 
a school teacher in front of a class. 

Ever since the time of Thales, the "mathematical proof" has been the distinguishing feature of 
mathematics - nevertheless as Lakatos observed in his famous Proofs and Refutations, "yesterday's 
proof" might be just a good joke today. 

Therefore a teacher who wants to convey the spirit of mathematics to her students has to create 
an understanding of what a mathematical proof is, and hopefully also a feeling for it. Mathematics 
is often considered as an authoritarian subject at school, while it could in fact be the least 
authoritarian, and thereby the most democratic subject of all. When a student has understood a 
proof, she knows that what the teacher told is true - not because the teacher said so, but because 
she has understood the proof. 

The issue of using proof in the class-room is certainly one of the most important questions to 
discuss among all teachers of mathematics. It was therefore clear to us that we needed a Panel 
Discussion concerning proofs, and at HPM such a discussion should consider both the historic and 
the educational aspect of this issue. The participants of this discussion were Guershon Harel, Siu 
Man-Keung, Tasos Patronis and Anders Öberg, with me as coordinator. Unfortunately the first 
edition of the proceedings was published in such a haste that only Guershon Hare’s contribution 
was included. 

I shall conclude this posteriorly written introduction to the panel discussion by telling about my 
own favorite “first proof in class”. I actually believe that this proof can be given already in primary 
school, perhaps in the second or third grade. The proof is preceded by asking the students to make 
a simple drawing on paper as follows. 

The teacher starts by asking the students to put say 7 dots on a piece of paper, and then connect 
pairs of points by drawing a curve between them. The rules are that every curve has to go between 
two different dots, and there is only allowed one curve between any two given dots. It is of course 
not necessary to connect all pairs of points. Two points are then said to be neighbors if there is a 
curve between them. The teacher then promises any student who is able to draw curves in such a 
way that all points have a different number of neighbors will be given something - say a small 
amount of money. 
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When the students have tried for some time, somebody will probably ask if it is possible, and it 
is then time to have a vote on whether it is possible or not. Perhaps it is then time to tell that it is 
impossible and hope for the question - how do we know that? 

One can then look at the simpler cases, 2 points, 3 points, 4 points, before one goes to the 
general case, and introduces the pigeon-hole principle. 
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Geometric explanation in elementary number theory from Pythagorean tradition to students 
of today: the case of triangular numbers 

According to the modern Greek historian of Mathematics Evangelos Stamatis (1898-1990), 
Triangular and Polygonal Numbers were constructed within the Pythagorean Tradition (as it 
appears in Nicomachus’ Introduction to Arithmetic) inductively, starting from a unit (monas),
which was given a particular polygonal shape. This unit was considered as a “potential” triangle, 
square or other regular polygon, which then was successively “augmented” into a similar polygon 
of sides 2,3,4 etc. by adding, each time, a suitable gnomon, i.e. a shape representing the difference 
between two successive polygonal numbers. This inductive construction can explain several 
properties of such numbers, as e.g. that the nth square number n2 is the sum of all n first odd 
numbers 1+3+5+…+(2n-1). However, it seems that it is not possible to use gnomons directly in 
order to find a “closed” form for the computation of the nth triangular number 

Tn = 1+2+3+…+n
The problem of computing Tn in an easy way (and its solution) was published together with 
Nicomachus’ Introduction to Arithmetic by R. Hoche in 1866, but apparently this problem does 
not belong to the work of Nicomachus. Modern textbooks of Elementary Number Theory 
sometimes re-arrange Tn into an orthogonal triangle shape, which they complete to a square or a 
rectangle and then compute Tn as the number of lattice points belonging to half of this rectangle 
(figures will be used in my panel 10-minutes introduction of the subject). Now this switch of the 
shape of representation, from a “regular” to an orthogonal one, causes some unexpected and 
interesting confusions to students of today and reveals a notable inherent logical difficulty in 
geometric explanations of this kind. 
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Proof in History and in the Classroom  
Through examples this introductory talk tries to explore the practice of mathematical pursuit, in 
particular on the notion of proof, in a cultural, socio-political and intellectual context. Not so much 
attention would be paid to the evolution of the standard of rigour or to the epistemological aspect 
of a mathematical proof (like in Proofs and Refutations by Imre Lakatos). Because of time 
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constraint not much attention would be paid to the technical detail of a proof of a specific theorem 
either. Rather, we try to look at a few examples, including: 

(1) the influence of the exploratory and venturesome spirit during the ‘era of exploration’ in the 
15th and 16th centuries on the development of mathematical practice in Europe, 

(2) the influence of the intellectual milieu in the period of the Three Kingdoms and the Wei-Jin 
Dynasties (in the 3rd and 4th centuries) in China on mathematical pursuit as exemplified in the 
work of LIU Hui, 

(3) the influence of Daoism in mathematical pursuit in ancient China with examples on 
astronomical measurement and surveying from a distance. 

One objective in mind in the discussion is to show how mathematics constitutes a part of human 
endeavour rather than stands on its own as a technical subject, as it is commonly taught in the 
classroom. The examples may also suggest ways to enhance understanding of specific topics in the 
classroom, but that would be best left to those who are doing the actual teaching in the classroom. 
Comments and suggestions are most welcome during the open discussion. 

528


